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Bottomless harbours 

By C .  J. R. GARRETT 
Institute of Geophysics and Planetary Physics, University of California, La Jolla 

(Received 14 January 1970) 

Does the harbour of an artificial island need a bottom T The excitation of waves 
inside a partially immersed open circular cylinder is considered. An incident 
plane wave is expanded in Bessel functions and for each mode the problem is 
formulated in terms of the radial displacement on the cylindrical interface below 
the cylinder. The solution is obtainable either from an infinite set of simultaneous 
equations or from an integral equation. It is shown that the phase of the solution 
is independent of depth and resonances are found at  wave-numbers close to those 
of free oscillations in a cylinder extending to the bottom. If the resonances of the 
cylinder are made sharper (by increasing the depth of immersion) the peak 
response of the harbour increases, but the response to a continuous spectrum 
remains approximately constant. Numerical results are obtained by minimizing 
the least squares error of a finite number N of simultaneous equations. Con- 
vergence is slow, but the error is roughly proportional to 1/N and this is 
exploited. The solution obtained from a variational formulation using the 
incoming wave as a trial function is found to give a very good approximation for 
small wave-numbers, but is increasingly inaccurate for large wave-numbers. 
Away from resonance the amplitude of the harbour oscillation is less than 10 % of 
the amplitude of the incoming wave provided the depth of the cylinder is greater 
than about wavelength, and it is argued that in practice at the resonant wave- 
number oscillations excited through the bottom of the harbour will leak out 
through the entrance before they can reach large amplitudes. In an appendix the 
excitation of harbour oscillations through the harbour entrance is discussed, and 
some results of Miles & Munk (1961) on an alleged harbour paradox are 
re-interpreted. 

1. Introduction 
Surface gravity waves are incident on a hollow cylinder partially immersed in 

water of finite depth, as illustrated in figure 1. The main object of this paper is to 
evaluate the resulting wave motion inside the cylinder. The results will be useful 
in deciding whether artificial islands, such as that proposed by the Scripps 
Institution of Oceanography, need have bottoms to their harbours. Clearly 
a bottomless island is cheaper to construct than one with a bottom, but the 
bottom can only be omitted if the harbour will still remain sufficiently calm. The 
results may also help decide whether it is feasible to protect a small area of sea 
from swell by building a sufficiently deep ‘wall ’ around it, enabling work inside 
this area to be carried out in calm water. 

28 F L M  43 



434 C .  J .  R. Garrett 

Mathematically the problem has much in common with that considered by 
Miles & Gilbert (1968). They considered the scattering of waves by a circular 
dock, i.e. by an artificial island with a bottom. The formulation (though not the 
solution) of the present problem closely follows Miles & Gilbert. 
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FIGURE 1. Open-bottomed circular cylinder of radius a immersed to depth d - h 

in water of depth d. 

2. Formulation 

number k. CJ and k are related through the dispersion relation 
Let the incident plane wave have amplitude Co, frequency CJ and wave- 

c2 = gk tanh kd, (2.1) 

where d is the depth of the water. The cylinder of radius a is immersed t o  a 
depth d - h. We assume small amplitude irrotational flow. 

The free surface displacement may be described by the real part of ce-iat, 

where the incoming wave has 

and 

5 = c o e i k x  

m 

m= 0 
= KO em imJ,(kr) cos mO 

Eo = 1, Em = 2 (m 2 1). 

I n  view of the nature of this cylindrical wave expansion it is appropriate to  
express the total disturbance as 

m 

The corresponding displacement potential [(I/ - ~ C J )  x the velocity potential] is 
m 

m=O 
$(r ,  0 , z )  = Co c Emirn@m(r, 2) COSmO, (2.6) 

where 
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in order to satisfy the kinematic free surface condition. # must also satisfy 

V2# = 0, (2.8) 

&j-ga#/az = o on z = d, (2.9) 
= 0 on z = 0, (2.10) 

a#/ar = 0 on r = a for h 6 z G d, (2.11) 

where (2.9) arises from the dynamic free surface condition, and (2.10), (2.11) 
are the conditions for zero normal displacement on the rigid boundaries. 

$, will be composed of the general solutions of (2.8), (2.9), (2.10), namely 

J,(kr) cosh kz,\ 

I Y,(lcr) cosh kz, 

I,(ar) cos az, 
K,(ar) cos az, 

(2.12) 

where a is a real positive solution of 

a tan ad + a2/g = 0, (2.13) 

J,, Y, are ordinary Bessel functions and I,, K ,  are modified Bessel functions. 
Following Miles & Gilbert we introduce the functions 

where 

(2.14) 

I (2.15) 

Z,(z), Za(z)  form a complete orthogonal set in [0, d]  with mean square values of 1. 
is continuous a t  r = a for 

0 < z < h. Suppose that 
The radial displacement, and hence 

a$,p = f,(z) at r = a for 0 6 z < h, (2.16) 

and remember that from (2.1 1) 

a$,lar = 0 a t  r = a for h 6 z < d. (2.17) 

a$,,,/& may be expanded over the whole interval 0 6 z 6 d as 

a$m/ar = Z s m a z a ( Z ) ,  (2.18) 
a 

where (2.19) 

and 

as the first term as well as all the positive real roots of (2.13). 

denotes summation over a including a = - ik, with corresponding suffix k, 
a 

28-2 



436 C. J .  R. Garrett 

We may now write down the appropriate expansion of $m in r 2 a and r < a 
in terms offm(z). In  r 2 a 

where H, = J, + iY, is the Hankel function of the first kind (the usual super- 
script 1 may be omitted without ambiguity) and note that 

Km( - ikr) = +rimflH,(kr). (2.21) 

Hankel functions of the second kind do not enter (2.20) as the scattered wave 
must satisfy a radiation condition, and the Bessel function I, is omitted as it is 
unbounded at infinity. In (2.20) the first term represents the incoming wave, the 
second term represents the wave that would be scattered if the cylinder extended 
to the bottom, and the infinite sum represents a further scattered wave (from 
a = -ik) together with a set of modes increasingly localized near the cylinder. 

I n r G a  
(2.22) 

where the first term in the sum has a = - ilc for which 

I,( - ikr) = ( - i)mJm(kr).  (2.23) 

Other modes are excluded by the requirement that $m be bounded at  the origin. 
Now the pressure, hence the azimuthal component of displacement and hence 

9, must be continuous at r = a for 0 < z < h, so that 

We now use the formulae 

Jm(ka)  H k ( k a )  - J k ( k a )  Hm(lca) = 2i(7rka)-l, (2.25) 

Im(aa)  K k ( a a )  - I k ( a a )  Km(aa)  = (aa)-l, (2.26) 

and define Fm = 2i[7rka2Hk(ka) Z;(d)]-l, (2.27) 

R, = -[ azazI;( a a )  KL(aa)]-l, (2.28) 

Equation (2.24) then becomes 

F m  z,(z) = X Ra FmcxZa(2). (2.29) 
a 

3. Solution 
Equation (2.29) is valid over the interval 0 < z < h, and over h < z < d 

we have 

Multiplying (2.29) and (3.1) by Z,(z), integrating each over the region of validity, 
adding and dividing by d, we obtain 

Fmcp = X E p a  F m a ,  (3.2) 
a 
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in which 

Equation (3.2) is an infinite set of simultaneous linear equations for Fm,. The 
solution of a finite number of these may not converge as rapidly as that obtained 
using other formulations, but the present approach has certain advantages. 
This will be discussed further in 3 7.  

Define 1 
D p a  = ZJ: z a ( z ) z g ( ~ ) d z ,  (3.5) 

then the actual values of C, D are 

C, = (N,N,)-:(P2d2+k2d2)-1(pdsinphcoshkh+kdcosphsinhkh), (3.7) 

(3.8) 
D,, = (N, NB)-i (a2d2 - p2d2)-l (ad sin ah cos ph - pd cos ah sin ph) 

for a + p, (3.9) 

D,, = D,, = c,, 

(3.10) 

C and D are real. R, is real unless 01 = - i k ,  for which 

R, = - [&nk2a2&(ka) H;,(ka)]-l. (3.11) 

Thus (3.2) may be written 

-% c,9 = (Elpi + Rk c,3 ska) 9rncz, (3.12) 
a 

where ElpJ is real, and defined by 

EfL = (R, - 1) D,, - R, c, d,, + &pa. (3.13) 

Assume that E$J is non-singular and suppose that (Da is the solution of 

C, = 2 E$J Qa. 
a 

The solution of (3.12) is then easily seen to be 

(3.14) 

(3.15) 

But CD, is real, so (3.15) gives us the important result that the phase of Sma is 
independent of a,  i.e. the phase of frn(z) is independent of z. 

We may also use (3.15) to derive a useful expression for F m k ,  which is the most 
important quantity in the solution. Using the definitions of Fm, R, in (2.27), (3.11) 
we may write g m k  from (3.15) as 

[ 1 +  R i l  CDi'1-l. kJ' (ka)  9 =--m 
mk Z;(d) 

(3.16) 
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But multiplying (2.29) by f m ( x )  and integrating over [0, It,] we have 

P m F m k  = R, 
a 

(3.17) 

or, using (3.15) Qk = Z’R, Qz, (3.18) 

where I;’ denotes summation over only the real roots a, i.e. a = - ik is excluded. 

Thus (3.16) may be written 

a 

X 

I n  9 6 we shall see that the right-hand side of (3.20) is stationary with respect to 
small variations of f,(z) about a constant times the exact solution, and so may 
be used to calculate a good approximation topvL,. However, in 3 4 we use (3.19) 
to deduce quite a lot about the behaviour of the solution, especially close to 
a value of ka for which J.:, vanishes. 

4. Resonance 
Using (2.7) and (2.22) the free surface elevation of (2.5) has 

in r < a, where 

The solution for r 2 a may be written 

where 

(4.3) 

(4.4) 

The first term on the right-hand side of (4.1) is the most important contribution 
to the wave motion inside the cylinder, the other terms describe waves which are 
generally confined near r = a. From (3.19) we may write 

The first thing we notice about this is that at a zero of JA(ka), A ,  = 1 and 
Fma = 0 (as Rk+m in (3.15)). Thus (4.1) and (4.3) become 

X,(r) = Jm(kr) for all r .  (4.6) 

This solution is only to be expected; if Jk(ka)  = 0 no scattered waves or waves 
localized near r = a are required to satisfy the boundary conditions and matching 
conditions for $,,, provided that X,(r) = J,-(kr) inside the cylinder. We might 
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expect this solution to be the resonant one, in the sense of giving the largest value 
of [Arn[ .  However, this is not the case, as can be seen by examining (4 .5)  further 
for ka close to a zero of J k .  

ka = j.; + p ,  (4 .7)  

where Jh'(jL) = 0, (4 -8 )  

Suppose that 

then 

a 

(4 .9)  
I-I 

@",% 
1 + & i m j 2  Jk(jhL) P[J&(.L) P + iYk(j,k)I C' ax21;(aa) K;(aa) . 

There is nothing special about jk as far as the coefficients in (3.14) are concerned, 
thus the infinite sum in (4 .9)  is a smooth finite function of ka and may be treated 
as constant in the neighbourhood ofjk. Denote 

(4.11) 

In  (4.10) Ik(au) K;(ola) < 0 (in fact Ik(cxa) Kk(aa) N - (2aa)-1 for large aa/m). 
Also Jk( jL)  and Yk(jL) are of opposite sign. Thus h and p are both positive, and 
(4 .9) ,  (4 .4)  give 

A ,  = [( 1 - Ap) - ihpp2]-l, (4.12) 

B, = ihpp2[( 1 - hp) - ih,~p2]-1, (4.13) 

for which lAml = d , ( p )  = [(1-hp)2+h2p2p4]--f, (4.14) 

lB,I = 2 , ( p )  = hpp2[(1 -hp)2+h2p2p*]-&, (4.15) 

For large h (as will generally be the case) d m ( p )  has a maximum of 

Bm(p)  has a minimum of 0 at p = 0, a maximum of 1 at p = l /h  and a minimum of 

4c(1+16$) - '  at p = -  2 
h A' 

Figure 2 shows d m ( p ) ,  B , ( p )  for h = 5, p = 1. For comparison with B , ( p )  
figure 2 also shows the amplitude, lppI(1 +p2p2)--f ,  of the wave that would be 
scattered by a cylinder extending to the bottom. 

This behaviour at  resonance is not unusual. Perhaps one can understand it as 
follows: At p = 0 the frequency of the incident wave is perfectly tuned to the 
natural frequency of a mode inside the cylinder, but the response is only d, = 1 
because r = a is a turning point and so the coupling is poor. For p > 0 the 
coupling increases more rapidly than the system is detuned, and so the response 
reaches a maximum at some small positive value of p .  This does not happen for 
p < 0 due to a mismatch in the phases of the incident wave and oscillation inside 
the cylinder. 
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The sharpness of a given resonance will depend largely on the value of k(d - h) .  
The deeper the cylinder extends compared with the wavelength of the incident 
wave, the sharper will be the resonance. This will be discussed further in $ 7  in 
terms of the numerical results obtained there. 

- 2  - 1  0 1 2 

FIGURE 2. Behaviour near resonance ( A  = 5,  ,u = 1). d ( p )  is the amplitude of the harbour 
oscillation, B ( p )  the amplitude of the scattered wave. The dashed line gives the amplitude 
of the scattered wave for a cylinder extending to the bottom. 

The above analysis does not apply if rn = 0 and there is a resonance for 
small ka. In this case define A, = - ~{C’(CD,2/CD.2k)[a2a2~n(aa) iT&(a~)]-1}~~~=,  and it 
is easily seen that 

A ,  .I. [1 -A,(ka)2-iAo&r(ka)4]-1 (4.16) 

which is of the form (4.12) with p = &I= and p replaced by (ka)2. For this to be 
a significant resonance would require (d - h) a. This resonance thus corresponds 
to the manometric oscillations in an open pipe discussed by Isaacs & Wiegel 
(1949). The present theory could be used to predict the amplitude of such oscilla- 
tions, but in doing so one would have to include the motion described by the 
infinite series of modified Bessel functions. These would no longer be localized 
near r = a as we would not have large aa. 

U. 

5. Response to a continuous spectrum 
In practice we would require the response of the harbour to a continuous 

spectrum of incident waves, rather than the plane wave treated so far. In con- 
sidering the contribution from a sharp resonance at ka = jL to the mean-square 
surface displacement inside the cylinder we need to know the value of the 
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This may be evaluated by contour integration as 

441 

8 w  {; [ 1 + ( 1  + y y  
h2 ( 1  +y, [ (1 + 2y" 11 

I = - -  

= ; [ 1 -$+ 0 ($1 
m 

0 3.83 
7.02 

1 1.84 
5.33 
8.54 

2 3.05 
6.7 1 
9.97 

3 4.20 
8.02 

4 5.32 
9.28 

0.976 
0.993 

0.690 
0.968 
0.988 

0.649 
0.943 
0.975 

0.610 
0.918 

0.579 
0.894 

0.916 
0.746 
3.14 
1.56 
1.22 

2,52 
1.41 
1.14 

2.21 
1.30 

2.02 
1.23 

5 6.42 0.554 1.88 

6 7.50 0.532 1.77 

8.58 0.514 1.69 

8 9.65 0.498 1.62 

TABLE 1. Zeros of J;(ka) less than 10, and associated quantities which describe 
the resonance of tho harbour near ka = j h  (see $3 4, 5) 

n 

If the incident waves have a frequency spectrum S(c-r), then the spectrum as 
a function of ka is ( l / a )  S((+) dc ldk .  Thus the contribution to the root-mean-square 
elevation at  (r ,  8) inside the cylinder due to the zerojk is given approximately by 
Am Jm(jL rla) cos m8 where 

- k d g 4  n 6 
A, = [ aS(cr) - c d k ]  - (Js) em- (5.4) 

This assumes a uni-directional spectrum. For a directional spectrum the depend- 
ence on 8 will be different but the order of magnitude much the same. Values of 
jL, p and (n-/jkp)& em for all j k  < 10 are given in table 1. 

Thus for sharp resonances the response of the harbour to a continuous spectrum 
is independent of the detailed solution of the problem, but is given by the 
remarkably simple expression (5.4). However sharp the resonance the r.m.s 
response is still finite. A similar effect for long waves trapped by circular sea- 
mounts has been found by Longuet-Higgins (1967), and also occurs for the excita- 
tion of harbour oscillations through the harbour entrance (see the appendix). 

Of course any departure from the idealized model treated here will alter this 
conclusion. The effect of a harbour entrance in particular will be discussed in 3 8. 



442 C. J .  R. Garrett 

6. Integral equation and variational approximation 

the integral equation 
Using the definition (2.19) of Pma in terms of fm(z ) ,  (2.29) may be written as 

f n  z k ( z )  = l ; g m ( z ,  c ) f m ( 6 )  d& (6.1) 

1 
where gm(z, 5)  = 2 C ' a  z a ( z )  z a ( 5 ) .  (6.2) 

a 

Equation (6.1) is a non-singular Fredholm integral equation of the first kind with 
a symmetric kernel. 

A variational approximation for Pmk equivalent to that used by Miles & 
Gilbert (1968) may readily be derived. Multiply (6.1) by f m ( z ) ,  integrate over 
0 < z 6 h and divide by d F k k  to obtain 

d j * j I a f m ( z )  gm(z, C)fm(C) d ~ d z  
(6-3) .- 0 0  __- Fm - 

Fmk [ j h f - ( z )  ~ k ( z )  dz]' 

As remarked by Miles & Gilbert (1968) for an equation of exactly the same form, 
the standard variational procedure leads to the result that the right-hand side 
of (6.3) is stationary with respect to small variations of f m ( z )  about a constant 
factor times the exact solution of (6.1) (since (6.3) is also independent of the scale 
of f m ( z ) ) .  In  other words, we may estimate P m k  to O(e2) by evaluating the right- 
hand side of (6.3) for a trial function which is within O(E) of a constant factor 
times the true solution, where c: is a small number. Moreover, it was proved in $ 3 
that the true solution has a phase independent of z, so that it is adequate to use 
a real trial function. 

With a trial functionfz(z) and associated coefficients Fza defined by (2.19), 
(6.3) leads to (cf. (3.20)) 

Miles & Gilbert derived all their results using the horizontal particle displacement 
of the incoming wave as the trial function, i.e. they tookt:(z) = Z,(z) whence 

in $7 .  
dma 0-* - - C, of (3.3). The accuracy of this for the present problem will be discussed 

7. Numerical methods and results 
We are primarily interested in Pmk, as this gives the amplitude of the oscilla- 

tion within the cylinder except near r = a. An approximate value of Fmk may 
be obtained from (6.4) if a suitable trial function is chosen. Miles (1967) has shown 
that the use of the incoming wave displacement as a trial function gives results 
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for the transmission and reflexion of surface waves at  a shelf which are in remark- 
ably good agreement with the detailed computations of Newman (1965). In the 
present problem the singularity at  r = a, z = h is more severe, though, and it 
turns out that the incoming wave displacement is not always an adequate trial 
function (see later). Of course one could include the singularity in the trial func- 
tion; excellent results could probably be obtained by using a trial function given 
by the sum of the incoming wave displacement and a factor times the displace- 
ment (h  - z)-* associated with the singularity, the factor being determined from 
the stationarity of (6.3). 

However, the numerical solution of a set of equations such as (3.2)) or at  any 
rate a large number of them, is rapid. Convergence may well be slow as the 
number N of equations taken is increased, but one can extrapolate to infinity 
and know the accuracy of one's solution, whereas it is difficult to assess the 
accuracy of a variational approximation. Moreover, solving the set of simul- 
taneous equations gives one all the F&, which could be used to calculate the 
force on the cylinder or the peripheral disturbance (though these calculations 
will not be performed here). 

We must now decide how to represent the exact solution and how to solve for it. 
It seems simpler to solve directly for Pma, or rather Ga, than to expand fm(z) in 
a set of functions complete over [0,  h] and solve (2.29) for the coefficients of these. 
We could solve the first N equations of (3.2) or (3.14), but a more satisfactory 
technique is probably to minimize the error of (2.29)) (3.1) in least squares, as 
suggested by Sommerfeld (1949, ch. 1, § 6 C) for a similar problem. First we use 
(3.15) to obtain the real equations 

m 

2 
xRR,@.,Za = zk for 0 < z < h: (7.2) 

where the summation is over M: and (7.2) omits M: = - ik. We now minimize 

We could take a weighting function inside each of these integrals and we could 
weight each integral differently. The present approach is the simplest, not neces- 
sarily the best. Making (7.3) stationary gives 

N 

1 
€,a @a = R,6Cfl- 6k,8 Rkck> (7.4) 

(7.5) I where &kk = 1 -Ck, &Ita = ba, = -ca for * k, 
= + (R) Ra - 1) Dpa for a =l k, /3 =k k. 

Equation (7.4) may now be solved numerically for any choice of N .  The solution 
is slow to converge because of the singularity f,(z) oc (h-z)-* near = h. 
However @k is found to be almost linearly dependent on 1/N for large N .  For 
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representative values of the parameters within the results shown here (7 .4)  was 
solved for N = 10,20,30,40,50,60,70,80 and the linear extrapolation to 1/N = 0 
using N = 20 and N = 40 compared with a smooth extrapolation using all the 
values of N .  The results generally agreed very well, the greatest discrepancy being 
less than 3%, and that in a situation where the answer for N = 40 was inaccurate 
by 15 %. Thus linear extrapolation (in N-1) from the solutions for N = 20 and 
N = 40 has been used to derive all the results presented here. Admittedly the 
values of d/a taken here are not large; for larger d/a  and certain values of h/a, ka 
one would need to take larger values of N .  

100 

10 

1 

0.1 

2 4 
kn 

6 

FIGURE 3. Comparison of variational approximation (---) with exact 
solution (-) for rn = 1, d/a = 0.6, h/a = 0.4. 

Having solved for the Flu for a given N one might hope to improve the 
accuracy of Flk by feeding the detailed solution back into the variational 
approximation by defining a trial function 

N 

1 
fa4 = x FmuZ, ( z )  (0 G 2 < h), (7.6) 

whence F z p  = I: D,jaFma. (7 .7)  
N 

1 

In  practice, though, this does not produce a significant increase in accuracy, 
again because of the singularity a t  z = h. (7.6)  must be within 0 ( 1 / N )  of the true 
solution except within O( 1 / N )  of x = h. The inaccuracy in the variational approxi- 
mation from this small region will be formally O( 1/N2),  but actually 
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Figure 3 shows dl( = \A1], see (4.2)) as a function of ka for d/a  = 0.6, 
hla = 0-4. The full line shows the exact solution (i.e. the extrapolation from 
N = 20,40) and the dotted line shows the variational approximation using 
f T ( x )  = Z,(z). We see that the variational approximation is extremely good for 
small ka, but deteriorates as ka increases and is out by a factor of nearly 2 at 

1 

0. I 

0.01 1 I I I I I \  I 0.01 I I I I I I 

2 4 6 2 4 6 
ka ka 

(a )  ( b )  

lorn 1 

0.1 

'd2 1 
1 h a =  0.4 

E Y=u-i I 
0.01 

2 4 6 

t \ I  
0.01 ' I I I I I \  

2 4 6 

ka ka 

( c )  (4 
FIGURE 4. Amplitude of harbour oscillation, d,,, for &/a = 0.6, h./a = 0.4, 0-2. 

( a )  ?n = 0, ( b )  m = 1 ,  ( c )  m = 2, ( d )  m = 3. 
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ka = 6. This may be understood in terms of the effect of the singularity at z = h; 
for large values of ka, Z,(z) decreases rapidly with depth, and so the singularity 
at  z = h will drastically alterf,(x) in the only part of [0, h] where 2, is not negligible 
compared with its value at z = h. 

Figure 4 shows d, for d/a = 0.6, hla = 0.4, 0.2, m = 0, 1, 2,  3 and illustrates 
the effect of increasing d - h. For a given ka the value of d, as a function of 
d/a and hla is determined mainly by (d  - h)/a is illustrated in figure 5 which shows 
dl for d/a = 0.4, 0.8 and (d-h)/a = 0.2. 

2 4 6 
ka 

FIGURE 5 .  Dependence of dl on dla for fixed (d - h)/a. 
-, dla = 0.4, h/a = 0.2; ---, dla = 0.8, h/a = 0.6. 

There is a slight tendency for the resonances to become sharper as d increases, 
but the effect is small; for fixed (d  - h)/a the value of d, at a given ka changes 
very little as kd increases beyond about 2. 

A rule of thumb emerging from the results is that apart from the resonances 
the amplitude of the motion inside the cylinder is less than 10 % of the amplitude 
of the incoming waves provided that the cylinder is immersed to a depth greater 
than about a quarter of the wavelength. This is comparable with Ursell’s (1947) 
results for the transmission of waves past a vertical barrier. 

8. Applications 
Any application of the foregoing theory and results to a design for a particular 

artificial island must take into account the following differences between the 
model treated here and reality: 

(i) the harbour will probably not be circular; 
(ii) the walls of the harbour will not be infinitely thin; 
(iii) the harbour must have an entrance. 

We ignore (i) as any harbour will have free modes of oscillation and the response 
of these will be much the same as for the circular cylinder considered. Finite wall 
thickness probably reduces the response of the harbour, but only by a small 
a.mount. The effect of the harbour entrance is less obvious. The harbour entrance 
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is itself associated with generation of the modes inside the harbour and also with 
radiative damping of these modes. At a resonant frequency it seems quite possible 
that a mode generated through the bottom could leak out through the harbour 
entrance before it could reach a large amplitude, or vice versa. 

Quantitatively one might describe a given mode inside the harbour as an 
oscillator which is both being forced and decaying in two different ways and is 
thus governed by the equation 

2 + 2(Q;' + &a1) p? +p2x = Re [(c + F,) p 2  eiUt]. (8.1) 

x is the amplitude of the oscillator and p its natural frequency. Q,, Q, are the Q's 
of the oscillator associated with the harbour entrance and bottom respectively 
and F, , Fb denote the complex amplitudes of the forcing functions for an incident 
wave of unit amplitude. Of course Q,, &b, F', F, may all be functions of w.  The 
solution of (8 .1 )  is 

x = Re [(F, + 4) 2-1 eiUt], (8.2) 

where 

Away from resonance x f Re [(F'+ Fb) ( 1  - (w2/p2))-l eiot] which is the sum of the 
responses of the oscillator to each forcing mechanism separately. The most 
important quantity associated with the resonance is the 'power transfer factor' 

which, when multiplied by the spectrum of the incident wave at  w = p ,  gives the 
mean square amplitude of the oscillator. In  (8.4) Q,, Qb take their values at 
w = p .  Then P = &rp I&+q12(Qe1+Qa1)-1. 
We must now relate F, to Q, and F, to &b. At resonance (4.12) resembles the 
response of an oscillator with Qb = h2p-l and a constant forcing function F, = h-l. 
Thus, taking p = 1, F, = Q;&. As shown in $ 5  this on its own gives a power 
transfer factor O(1) independent of Qb. The excitation through the harbour 
entrance may similarly be described by a forcing function 8 = vQ;& where v is 
a constant (see the appendix). The entrance on its own has a power transfer 
factor O(v2). Assuming F, and F, to be in phase the total power transfer factor 
may be written 

Thus if &,I&, is large enough, the effect of resonant excitation through the 
harbour bottom is negligible; the excited wave leaks out through the harbour 
entrance instead of building up to a large amplitude. 

(8.5) 

P cc (vQ;* + (Q;'+ Q;l)-l. (8.6) 
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Appendix. The response of a harbour to excitation through its entrance 
Miles & Munk (1961) discussed the excitation of a harbour oscillation by 

regarding it as a forced oscillator with a given Q and a forcing function of ampli- 
tude one. Thus they found a peak response at  resonance of Q and a power transfer 
factor of O ( Q )  (i.e. the mean square response of the harbour to a continuous 
spectrum is O(Q) times the spectral density a t  the resonant frequency). Narrowing 
the entrance to a harbour increases its Q and so they were led to the paradoxical 
result that decreasing the width of the entrance to a harbour decreases its 
protection from the external waves. 

This is incorrect, however, due to the erroneous assumption that the appropri- 
ate forcing function has amplitude one. In  fact the detailed calculations of Miles 
& Munk for a rectangular harbour of length d, width b, and entrance width a 
indicate a peak response of O(Q4) with corresponding power transfer factor O(1). 
In the following interpretation of their solution the second number in brackets 
refers to an equation number of Miles & Munk. 

They show that the disturbance in the harbour may be described by 

where Ci is the amplitude of the incident wave. G(x, y, 7) is a Green’s function 
given by 

cos [k(x + d) ]  + an infinite sum of modes trapped 
(A 2,461 kb sin kd near the entrance. G ( x ,  Y, 7)  = - 

#(7) describes the shape of the surface elevation in the harbour entrance and is 
normalized so that 

(A3, 35)  
J -&I 

Thus for a harbour entrance narrow compared with a, wavelength the most 
important part of the response of the harbour is given by 

6 ( X ’  Y 1 2 cos [k(z + d ) ]  - - -__ 
&(O,  0) - D(k)  kb sin kd ‘ 

D(k)  is calculated by a variational approximation and near a minimum modulus 
at k = Ic,  is given by 

fA5,55) 

The equation for k, is 

cosec z) , 8 
2b 

where In y is Euler’s constant. Also 

cotkod d 1 

k,b b ll 
Q = -  + -cosecZk,d - - . (A7, 57) 
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Clearly for small a/b the second term of Q is dominant (Q  is O(lnk,a)). The peak 
response of the harbour occurs very close to k,, though slightly offset by the 
variation in sin kd in the denominator of (A 4), and is given approximately by 

c(x7 ’) = - 4i(k, bk, d)-& Q4 cos [k,(x + d) ] .  
0) 

Thus, except for the fundamental mode for which k, is very small and the 
harbour acts as a Helmholtz resonator, the peak response is O(Q4). The appropri- 
ate forcing function for the analogous oscillator is O(Q-4) and the power transfer 
factor is O(1). There is a harbour paradox in that as the harbour entrance is 
decreased, the resonant response to a monochromatic incident wave increases, 
and the response to a continuous spectrum does not decrease, but this is a weaker 
result (by a factor Q4 in the amplitude) than that asserted by Miles & Munk.7 

These results are for a rectangular harbour set into a straight coastline, but it 
seems reasonable to expect the same qualitative results for a harbour of a 
different shape in the open sea. Thus one might regard an oscillation in such 
a harbour as a forced oscillator with a forcing function vQ-3 where v is a factor 
which is presumably small if the harbour entrance is on the side of the island 
away from the incoming waves. 
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